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A deep learning approach for surface electromyographic signal analysis: 
toward robotic elbow orthosis control

Un enfoque con aprendizaje profundo para el análisis de señales electromiográficas de superficie: 
hacia el control de órtesis robótica de codo

Edwin A. Ruelas-Estrada1, Juan Guzmán-García1, Lennin E. Figueroa-Gil1, Joshua A. Romero-Andrade1, and 
Edgardo U. León-Salguero2*

1Estudiantes de 8.o semestre de la Licenciatura en Ingeniería Biomédica. Departamento de Ingeniería Química y Meta-
lurgia de la Universidad de Sonora, Unidad Regional Centro, Campus Hermosillo. Blvd. Luis Donaldo Colosio esq. con 
Reforma, C. P. 83000. ORCID Ruelas-Estrada E., 0009-0009-8455-1929; Guzmán-García J., 0009-0008-3751-2591; 
Figueroa-Gil L., 0009-0009-4468-4014; Romero-Andrade J., 0009-0002-1642-0686.
2Doctor en nanotecnología. Departamento de Ingeniería Química y Metalurgia de la Universidad de Sonora, Unidad 
Regional Centro, Campus Hermosillo. Blvd. Luis Donaldo Colosio esq. con Reforma, C. P. 83000. ORCID León-Salguero 
E., 0000-0002-9088-4334.
*Correo electrónico de autor de correspondencia: edgardo.leon@unison.mx 

DOI: https://doi.org/10.59420/remus.2.2025.323						           Recibido: 31/05/2025
Aceptado: 02/08/2025

Abstract

Motor disabilities resulting from neuromuscular diseases severely impact patients’ quality of life. This 
study proposes a hybrid CNN-LSTM regression-based model to estimate elbow joint angles in real-time 
using surface electromyographic (sEMG) signals, aiming for precise and continuous control of robotic 
orthosis. sEMG signals from the biceps and triceps, obtained from a validated public database, were pre-
processed rigorously. The model was trained and evaluated using the following metrics: MAE (0.0828), 
RMSE (0.1132), R² (0.9517), and Pearson correlation (0.9757), demonstrating high accuracy and robust-
ness. A graphical user interface was developed to display real-time sEMG signals and predictions. Re-
sults confirm the feasibility of the proposed approach for clinical applications, highlighting its potential 
to enhance upper-limb rehabilitation and promote patient autonomy through intuitive control of active 
orthotic devices.
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Resumen

Las discapacidades motoras derivadas de enfermedades neuromusculares afectan significativamente la 
calidad de vida de los pacientes. En este trabajo se propone un modelo híbrido CNN-LSTM con enfoque 
regresivo para estimar en tiempo real el ángulo articular del codo a partir de señales electromiográficas 
superficiales (sEMG), con el objetivo de controlar de forma precisa y continua una órtesis robótica. Se 
emplearon señales sEMG de bíceps y tríceps de una base de datos validada, las cuales fueron sometidas 
a un riguroso preprocesamiento. El modelo fue entrenado y evaluado utilizando métricas como MAE 
(0.0828), RMSE (0.1132), R² (0.9517) y coeficiente de Pearson (0.9757), evidenciando alta precisión y 
robustez. Además, se desarrolló una interfaz gráfica para visualizar las señales y predicciones en tiempo 
real. Los resultados confirman la viabilidad del enfoque propuesto para aplicaciones clínicas, destacando 
su potencial para mejorar la rehabilitación funcional del miembro superior y promover la autonomía del 
paciente mediante un control intuitivo de órtesis activas.

						      Palabras clave: EMG, inteligencia artificial, órtesis

Introduction
Neurodegenerative and neuromuscular disorders, 
including multiple sclerosis, amyotrophic lateral 
sclerosis, muscular dystrophy, spinal muscular 
atrophy, spinal cord injury, and stroke, ultimate-
ly lead to a progressive loss of motor function, 
rendering individuals unable to perform even the 
simplest of tasks. Consequently, patients often 
experience a substantial decline in independen-
ce, quality of life, and self-esteem due to their 
constant reliance on external assistance. This is-
sue is particularly critical in upper limb function, 
as autonomy in these muscle groups is not only 
essential for basic activities but also for perfor-
ming everyday actions that, although not vital, 
play an essential role in maintaining emotional 
well-being and overall life quality.1,2

Motor training-based physical rehabilitation, 
centered on the repetition of isolated move-
ments, has been proven to be highly effective 
in restoring upper limb functionality.2-6 Despite 
its proven benefits, conventional rehabilitation 
approaches still rely heavily on the continuous 
involvement of trained therapists. This depen-
dence can significantly hinder patient recovery 

due to several factors, including the time-con-
suming and labor-intensive nature of therapy, 
as well as limited access to therapist-mediated 
care and specialized equipment; barriers that are 
especially pronounced in resource-limited set-
tings.2,3,7 Furthermore, rehabilitation success is 
highly dependent on the patient’s ability to at-
tend therapy consistently. However, these limi-
tations often result in persistent upper limb im-
pairment among patients.2,3

Given this context, autonomous recovery of lost 
motor function represents a meaningful step 
towards achieving greater independence in dai-
ly life. Technological advances in rehabilitation 
engineering introduce promising alternatives to 
address muscle weakness, notably through the 
development of assistive devices (ADs). These 
devices are specifically designed to assist users in 
performing both particular or everyday activities, 
while maintaining or enhancing their functional 
abilities despite physical impairment.1,8-10

Among ADs, myoelectric orthoses stand out for 
their capacity to partially restore lost motor func-
tion. These devices function by detecting surface 
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electromyographic (sEMG) signals generated by the 
user’s muscle contractions using integrated elec-
trodes. The recorded action potentials from groups 
of muscle fibers are subsequently processed to per-
form movement.11-17 However, similar to conventio-
nal rehabilitation, these technologies remain limi-
ted in many resource-constrained settings, where 
an estimate of only 5-15 % of individuals in need 
of ADs have access to them, primarily due to fac-
tors such as low production volumes, substandard 
quality and a lack of a qualified specialist to instruct 
patients in the operation of these devices.18

Machine learning (ML), a subset of artificial inte-
lligence (AI), has been introduced and applied in 
the extraction of relevant features from sEMG sig-
nals, generating improved control strategies for 
ADs. Various studies have demonstrated the feasi-
bility of ML models to classify tasks and enhance 
the accuracy and robustness of human movement 
recognition. The incorporation of AI in the deve-
lopment of robotic orthoses optimizes their func-
tionality and adaptability to user needs.3,11,19

Notably, deep learning (DL) algorithms are ca-
pable of autonomously learning representations 
directly from raw data with minimal human in-
tervention. These DL models present a layered 
architecture that incorporates artificial neural 
networks, enabling them, in principle, to func-
tion similarly to the human brain.19

Convolutional neural networks (CNNs), an animal 
visual cortex-inspired DL architecture,14,20 have 
vast applications such as image processing, com-
puter vision, and text classification, due to the 
capability to process structured arrays of data.19,20 
In contrast to handcrafted features, CNNs are ca-
pable of autonomously learning relevant featu-
res from sEMG signals, requiring relatively small 
quantities of data for model optimization.14,21,22 
When applied to sEMG signals, CNN processes se-
quences of muscle potential values, enabling the 

extraction of features such as muscle burst, wave 
patterns, and muscle activation dynamics.

Long short-term memory (LSTM), a specialized 
type of recurrent neural network (RNN) and a bio-
logically inspired neural network, is a widely used 
DL model with the capability of recognizing patter-
ns and temporal dependencies in sequential data.23 
Proven effective in applications such as numerical 
time series, texts, and audio recordings, the LSTM 
architecture allows for enhanced modeling of the 
long-term dependencies in time-dependent data. 
Given the sequential nature of the sEMG signals, 
LSTM models are well-suited for identifying the 
timestamps of muscle activity. 19,23-27

The primary objective of this work is the devel-
opment and validation, through simulations, of a 
hybrid deep learning model that integrates con-
volutional and recurrent neural networks, CNN 
and LSTM respectively, for real-time estimation 
of the elbow joint angle using surface electromy-
ography (sEMG) signals. This work aims to estab-
lish a foundation for future implementation of 
DL models in the control of robotic orthoses for 
assistance or rehabilitation.

Materials and methods
No experimental procedures involving human 
participants were performed in this study. All 
analyses were conducted using a publicly accessi-
ble, previously validated dataset, which possesses 
prior ethical approval for its use and distribution.28

The proposed methodology focuses on four main 
stages: dataset selection, signal preprocessing 
and processing, CNN-LSTM hybrid architecture, 
and deep learning model predictions.

Database selection 
The selected dataset used contains surface elec-
tromyography (sEMG) and kinematic data (elbow 
joint angles) from ten subjects (six males and four 
females) performing various flexion–extension 
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and pronation–supination exercises. For flexion–
extension movements, data were collected with 
the subjects standing and performing the mo-
vement with their arm alongside the body. For 
pronation–supination movements, subjects were 
seated with the forearm supported on a table.

The sEMG signals were acquired using a Shim-
mer3 EMG device, while joint angles were esti-
mated using the integrated inertial measurement 
units (IMUs) in the same device. Each subject 
performed the following exercises: flexion–ex-
tension without load, with a 3 lb dumbbell, and 
with a 5 lb dumbbell; as well as pronation–supi-
nation under the same load conditions.

For this study, only the data corresponding to the 
flexion–extension movement without additional 
loads were used. These signals were acquired at 
a sampling frequency of 1024 Hz while subjects 
followed a controlled rhythmic pattern.

Elbow joint angles, ranging from 0° (full exten-
sion) to 120° (maximum flexion), were defined as 
the target variable for the regression model. The-
se values were obtained from the IMUs during 
sEMG data acquisition, providing a reliable and 
continuous ground truth. This dataset was selec-
ted due to its public availability, inclusion of raw 
signals for all subjects, and sex-based variability.

Signal preprocessing and processing  
Accurate and meaningful extraction of muscle 
activity data relies heavily on the effective pro-
cessing of EMG signals. Raw signals, due to their 
low amplitude and susceptibility to noise, are not 
suitable for direct analysis or practical applica-
tions without proper preprocessing.29

According to this, in the preprocessing stage, a 
notch filter at 60 Hz was applied to remove power 
line interference. This was followed by the Tea-
ger–Kaiser Energy Operator (TKEO),30 to enhan-

ce the detection of muscle activation. A band-
pass filter with cutoff frequencies of 15 Hz and 
350 Hz (the recommended approach according to 
recent studies)31 was then used to eliminate irre-
levant frequency components.

After filtering, the signals and corresponding joint 
angles from all subjects were concatenated and 
truncated to the same length, using the shortest 
signal as a reference. A feature matrix was then 
constructed using a sliding window approach.

A window size of 600 ms and a step size of 40 
ms were selected. This configuration allows the 
model to capture complex patterns of muscle 
activation while maintaining high temporal re-
solution. The resulting 93.33 % overlap between 
windows smooths the predictions and increases 
the amount of effective training data.

CNN + LSTM hybrid architecture 
The proposed model comprises two one-dimen-
sional convolutional layers (Conv1D), which are 
responsible for extracting both spatial and tem-
poral features from raw sEMG signals. These 
layers enable the identification of relevant pa-
tterns within temporally segmented windows. 
Subsequently, two LSTM layers are incorporated 
to capture the temporal dependencies inherent 
in the EMG signals. Finally, a dense output layer 
with linear activation is used to perform regres-
sion on the elbow joint angle.

Deep learning model predictions
Dividing data into training, validation, and test 
sets is critical  for preventing overfitting and for 
reliably evaluating the performance of machine 
learning models in medical applications. Accor-
ding to Amazon Machine Learning documenta-
tion, a commonly adopted strategy is to divide 
labeled datasets into training and evaluation 
subsets, typically allocating 70-80 % for training 
and 20-30 % for evaluation.32
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In this work, the dataset was partitioned into 70 
% for training, 20 % for validation, and 10 % for 
testing. The hybrid model was trained using the 
preprocessed sEMG signals, and its performance 
was assessed on the test dataset.

Model evaluation was performed using the fo-
llowing statistical metrics: coefficient of deter-
mination (R²), mean absolute error (MAE), root 
mean square error (RMSE), and Pearson’s corre-
lation coefficient. These metrics provide a com-
prehensive assessment of the model’s regression 
capabilities.

Graphic User Interface (GUI)
Finally, the trained model was integrated into 
a GUI to facilitate real-time operation and user 
interaction. The GUI displays a simulation of 
real-time sEMG signal input, the corresponding 
joint angle prediction, and statistical metrics, 
allowing users to monitor the model’s perfor-
mance during execution.

In this regard, GUIs allow researchers to gain a 
deeper understanding of EMG signals and their 
analysis procedures, which can be leveraged for 
more powerful and flexible applications in the 
future. These interfaces not only facilitate inter-
action between the user and the system but also 
enhance patient motivation, enable real-time 
monitoring, and provide visual feedback that can 
optimize the rehabilitation process.33,34

Results
This section presents the performance evalua-
tion of the CNN+LSTM model, including the cal-
culation of various standard statistical metrics 
and graphical analyses. The results demonstrate 
the model’s capability and accuracy in predicting 
elbow joint angles from surface electromyogra-
phy (sEMG) signals.

Metric evaluation
The root mean squared error (RMSE) and the 
mean absolute error (MAE) are two standard me-
trics widely used in the performance assessment 
of predictive models. The MAE represents the 
average of the absolute differences between ac-
tual and predicted values, while the RMSE is the 
square root of the mean squared error (MSE). Al-
though taking the square root does not change 
the relative ranking of evaluated models, it allows 
for the metric to be expressed in the same units 
as the target variable “ŷ”, which is useful since it 
conveniently represents the typical or “standard” 
error when errors follow a normal distribution.35 
The values obtained by the model were MAE = 
0.0828 and RMSE = 0.1132. 

Table 1. Evaluation metrics of the CNN-LSTM model for 

elbow joint angle estimation

Metrics Results
MAE 0.0828

RMSE 0.1132
R2 0.9517

PCC 0.9757

The table summarizes the model’s performance 
metrics, computed using the Scikit-learn library 
in Python. These metrics assess the accuracy of 
the elbow joint angle predictions, where lower 
MAE and RMSE values indicate smaller errors, 
and higher R² and Pearson’s Correlation Coeffi-
cient (PCC) values reflect a strong alignment be-
tween predicted and actual values.

These values reflect an acceptable model perfor-
mance, considering that both errors are relatively 
low and close to each other. The RMSE being sli-
ghtly higher suggests the presence of some larger 
errors, as this metric penalizes larger deviations 
more heavily due to its quadratic nature.
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The coefficient of determination (R²) indicates 
the proportion of variance in the response varia-
ble that is explained by the independent variables 
in a linear regression model. Higher R² values re-
flect greater explanatory power of the model.36

In this study, a R² value of 0.9517 was obtained, in-
dicating that 95.17 % of the variability in joint an-
gles can be explained by the model based on elec-
tromyographic signals. This result is considered 
favorable, as it indicates a highly accurate fit be-
tween the model’s predictions and the actual data.

It is important to emphasize that, although a high 
R² value indicates strong model performance, it 
does not guarantee that the model is completely 
error-free; it does strongly suggest that the mod-
el has successfully captured the relationship be-
tween input and output variables.37

The Pearson correlation coefficient (PCC) is a 
fundamental statistical metric for quantifying 
the linear relationship between a model’s predic-
tions (output variables) and the actual observed 
values (input variables).38 The generated model 
shows a PCC of r = 0.9757. 

Graphical analysis
Figure 1 displays blue dots representing data pairs 
(actual value, predicted value) and a red dashed 
line representing the ideal line. A high concentra-
tion of points near this line is observed, indicating 
a precise match between the model’s predictions 
and the actual values. The strong visual correla-
tion supports the previously reported PCC value.

As shown in Figure 1, the angle predicted by our 
model is consistent with the actual angle provi-
ded by the dataset. The overlap of both curves 
demonstrates that the model accurately captu-
res both the general shape of the signal and the 
dynamic transitions between different phases of 
movement. This agreement is especially noti-
ceable in the flexion and extension peaks, where 
prediction challenges typically arise due to the 
rapid joint movement.

Moreover, the low dispersion between both curves 
suggests a robust generalization capability of the 
model, which is essential for its implementation 
in a real-time assistive system, always conside-
ring that new signals must be processed using the 
same algorithm with which the model was trained 
and must follow a signal acquisition protocol si-
milar to that used in the employed dataset.

The observed accuracy (95.17 %) in the predic-
ted signal quantitatively supports the previously 
analyzed metric values and reinforces the feasi-
bility of the CNN-LSTM approach as an effective 
tool for continuous joint angle estimation from 
EMG signals.

Overall, these results suggest that the model can 
predict the joint angle with adequate accuracy, 
which represents a significant step towards the 
implementation of control systems for the pro-
posed application.
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Figure 1. Graph of actual vs. predicted angle by the 
CNN-LSTMmodel, with samples vs. angle

Note: the figure illustrates the model’s performance through 
two visualizations. On the left, the comparison between real 
and predicted joint angles over time shows a strong overlap of 
both signals, especially at flexion and extension peaks, confir-
ming the model’s ability to follow the dynamics of movement. 
On the right, the scatter plot shows predicted vs. actual values, 
with most points concentrated near the ideal red dashed line, 
visually supporting the high R² (0.95) and PCC (0.98) previous-
ly reported.

Discussion 
The hybrid CNN-LSTM architecture represents a 
significant methodological advancement in the 
preprocessing of sEMG signals for the control of 
robotic orthoses, outperforming conventional 
AI-based approaches that are limited to discrete 
movement classification.39 In contrast to these 
methods, the proposed model generates conti-
nuous estimations of joint angles, which enables 
proportional control and high kinematic fidelity, 
particularly valuable in clinical contexts where 
natural motion patterns need to be replicated 
with high accuracy (95.17 %). This angular re-
gression capability positions the architecture as 
a technically superior solution for rehabilitation 
applications that demand accuracy and smooth-
ness in robotic actuation, thus establishing a new 
paradigm in the integration of deep neural ne-
tworks for biomedical signal processing.

In previous studies,40 it has been demonstrated 
that hybrid models based on CNN-LSTM archi-
tectures exhibit superior performance compared 
to traditional pure approaches, such as those re-
lying solely on CNN, LSTM, SVM, or KNN. This 
advantage is particularly evident in regression 
tasks applied to the processing of sEMG signals, 
positioning these hybrid models as a more robust 
and efficient alternative for the development of 
targeted applications in this field.

In an article,41 a hierarchical dynamic Bayesian 
model is introduced, integrating Gaussian mix-
ture models (GMM) and hidden Markov models 
(HMM) to classify movement states based on 
sEMG signals. Although Bayesian networks de-
monstrated notable effectiveness in state classi-
fication tasks, achieving an accuracy of 93.83 % 
when including the resting state, the proposed 
model is outperformed in regression tasks by al-
ternative approaches. These regression tasks are 
essential for continuous and smooth control of 
robotic orthoses, as they enable more precise and 
dynamic estimation of motor intentions. Never-
theless, it is important to emphasize that both 
architectures can be regarded as complementary, 
since their integration could leverage the indi-
vidual strengths of each model across different 
aspects of sEMG signal processing and analysis.

The CNN-LSTM hybrid model demonstrates ex-
ceptional performance, as evidenced by key me-
trics such as a coefficient of determination (R²) 
of 0.9517 and a Pearson correlation coefficient of 
0.9757. This high level of accuracy can be attribu-
ted to the synergy between its architectural com-
ponents and a rigorous signal processing pipeline. 

On one hand, the convolutional layers (Conv1D) 
perform automatic extraction of hierarchical fea-
tures, with the first layer identifying simple lo-
cal patterns in the sEMG signals, such as abrupt 
amplitude changes, while the second layer cap-
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tures more complex combinations of muscle 
activation. On the other hand, the LSTM layers 
incorporate temporal memory, preserving infor-
mation from previous 600-ms windows, which is 
critical for modeling the temporal dynamics of 
joint movements, particularly during transitions 
between flexion and extension phases.

Additionally, the optimized signal preprocessing 
pipeline, which includes the application of a notch 
filter, a band-pass filter, and the TKEO, enables 
the effective extraction of genuine neuromuscu-
lar components while systematically mitigating 
various artifacts inherent to signal acquisition in 
real-world environments. This rigorous denoising 
process allows the convolutional layers of deep 
architecture to more accurately discriminate au-
thentic spatiotemporal patterns of muscle activa-
tion, establish statistically robust correlations be-
tween electromyographic features and reference 
joint angles, and minimize the learning of spuri-
ous features that could compromise the validity 
of predictions. Consequently, the integrity of the 
input signal is preserved as a critical determinant 
of the model’s outstanding performance in con-
tinuous regression of kinematic parameters.

The implemented GUI is not merely a supple-
mentary feature but rather plays a pivotal role as 
a critical enabler for the clinical adoption of this 
technology. It allows for real-time visualization 
of both sEMG signals and predicted joint angles, 
thereby enabling therapists to immediately as-
sess the relationship between muscle activation 
and movement patterns. This capability is es-
sential for optimizing rehabilitation protocols 
through personalized adjustments. Furthermore, 
the GUI has been designed with an emphasis on 
ergonomic and functional optimization, ensur-
ing a minimal learning curve and facilitating its 
deployment in resource-constrained settings, 
where operational simplicity and efficiency are 
crucial for clinical viability.

According to the document published by INEGI,42 
it is evident that 15.9 % of women and 18.1 % of 
men with disabilities have difficulties in moving 
or using arms or hands, with the main causes 
being diseases (43.9 %) and advanced age (27.2 
%). Although the study does not specify the per-
centage of individuals receiving physical reha-
bilitation, the data indicate that 67.2 % of this 
population is affiliated with social security insti-
tutions, while 17.9 % have access to public health 
services, suggesting that, in theory, a significant 
proportion could be covered for rehabilitation 
therapies. However, lacking accurate information 
on their effective implementation, a critical gap 
in care is evident. In this context, the adoption 
of the proposed technology, based on AI for per-
sonalized medicine, adaptive rehabilitation with 
automatic calibration, and the development of 
low-cost robotic elbow orthoses through open-
source hardware and software solutions, would 
represent a substantial advance by offering an ac-
cessible, scalable and highly adaptable system to 
the individual needs of patients, thus optimizing 
the resources available in healthcare institutions.

The presented DL model was developed and validat-
ed using data from healthy subjects, without taking 
into consideration significant physiological char-
acteristics (e.g., age, body mass index, arm length, 
lateral dominance), representing a significant lim-
itation in extrapolating the results to clinical pop-
ulations. Consequently, it is suggested that future 
research incorporate adaptive preprocessing proto-
cols that allow the inclusion of electromyographic 
signals contaminated by clinical factors such as the 
influence of drugs or the presence of involuntary 
movements. Also, it is recommended to initiate clin-
ical validation through pilot studies in populations 
under controlled neurological conditions, such as 
patients with relapsing-remitting multiple sclero-
sis, before extending its application to cohorts with 
more complex and advanced pathologies, such as 
advanced amyotrophic lateral sclerosis.
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During the acquisition of a patient’s muscle ac-
tion potentials, several technical improvements 
could significantly enhance system performance. 
One key enhancement would be the use of porta-
ble, high-precision electrodes, which offer better 
signal quality, increased comfort for the user, and 
greater robustness against motion artifacts and 
electrode displacement—common issues in long-
term or real-world applications. Other potential 
improvements include the implementation of wi-
reless data transmission to increase the system’s 
portability and reduce cable-induced noise, as 
well as the use of adaptive filtering techniques to 
dynamically adjust to changing noise conditions. 
Finally, personalized calibration procedures and 
online learning algorithms could allow the model 
to adapt to individual users and improve perfor-
mance over time, particularly in rehabilitation 
scenarios where muscle activation patterns may 
change during recovery.

Finally, we propose the implementation of a 
quantized architecture on low-power microcon-
trollers, combining a hybrid CNN+LSTM model 
for the prediction of the desired angle, together 
with a PID controller in charge of the precise tor-
que correction, integrating also an emergency 
stop module based on critical thresholds of sEMG 
activity, to guarantee both the safety and the 
operational stability of the system in real time.

Critical analysis of related works
A critical analysis underscores the advanta-
ges and trade-offs of the proposed CNN-LSTM 
approach. Velásquez et al. (2023)19 demonstrated 
that hybrid CNN-LSTM architectures outperform 
single-architecture models in classification tas-
ks by effectively capturing both spatial and tem-
poral features of sEMG signals. While their work 
was focused primarily on discrete classification, 
our study extends the applicability of this hybrid 
architecture to continuous regression, achieving 
high kinematic fidelity (R² = 0.9517) necessary 

for real-time orthosis control. Similarly, Cai and 
Zhu (2021) 40 reported significant improvements 
in gesture recognition accuracy when integrating 
CNN and LSTM, but their experiments did not 
address regression-based control, leaving a gap 
that our model addresses. In contrast, Chen et al. 
(2023)41 employed a hierarchical dynamic Baye-
sian model (GMM + HMM) for movement state 
classification, obtaining notable accuracy (93.83 
%), yet their framework lacks the capability for 
continuous estimation. This limitation makes it 
less suitable for smooth, proportional control in 
assistive devices, where our CNN-LSTM approach 
demonstrates clear advantages. 

Table 2. Performance analysis of selected models for 
sEMG-based robotic orthosis control

Model Performance Applicability
SVM Accuracy = 

93.35 % in 
gesture classifi-

cation 3

Discrete mo-
vement classi-

fication

CNN Accuracy = 
91.30 % in mo-
vement classi-

fication 14

Movement 
classification 
and muscle 

activation de-
tection

LSTM Accuracy = 
91.30 % in 

real.24

Sequence pre-
diction and 
time-series 
modeling

CNN + 
LSTM

R2 = 0.95 (this 
study)

Continuous 
and precise 

control of or-
thoses

Note: the table summarizes the performance and applicability 
of various machine learning and deep learning models com-
monly employed for sEMG signal analysis. The comparison in-
cludes traditional approaches, such as SVM, and advanced ar-
chitectures, such as CNN, LSTM, and the proposed CNN+LSTM 
hybrid model, highlighting their reported accuracy and primary 
use cases in movement classification, time-series prediction, 
and continuous control of orthoses.
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Conclusion
This study presents a hybrid CNN-LSTM model 
designed to estimate elbow joint angles in real 
time from surface electromyographic (sEMG) 
signals, to enable intuitive control of robotic or-
thoses. The proposed architecture successfully 
integrates the spatial feature extraction capabi-
lities of convolutional layers with the temporal 
sequence modeling strengths of recurrent la-
yers. The model achieved a high predictive per-
formance, with a Pearson correlation coefficient 
of 0.9757, a coefficient of determination (R²) of 
0.9517, and low error rates (MAE = 0.0828, RMSE 
= 0.1132), validating its efficacy in mapping EMG 
signals to biomechanical variables. These results 
support the central hypothesis that EMG-based 
AI models can provide accurate, continuous es-
timations of joint motion, offering a promising 
avenue for the development of intelligent assis-
tive technologies. The model’s robustness and 
precision make it a strong candidate for future 
integration into portable and adaptive rehabili-
tation systems. Compliance with national and in-
ternational medical device regulations has been 
considered in additional research, laying the 
groundwork for clinical translation and potential 
commercialization.
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