Avances recientes en el tratamiento del cáncer de tiroides basado en el uso de nanopartículas: una revisión narrativa
Recent advances in nanoparticle-based treatment of thyroid cancer: a narrative review
DOI:
https://doi.org/10.59420/remus.2.2025.296Palabras clave:
cancer de tiroide, tratamiento de cancer, cmt, nanomedicina, TiroideResumen
El cáncer de tiroides (CT) es una de las neoplasias endocrinas frecuentes con una incidencia en aumento a nivel mundial. Los tipos más comunes de CT incluyen el carcinoma papilar, folicular, oncocítico, medular y el agresivo carcinoma anaplásico. A pesar de los tratamientos como la cirugía y el yodo radiactivo, entre el 7 % y el 23 % de los pacientes pueden desarrollar metástasis resistentes a la terapia. El objetivo de esta revisión fue demostrar el potencial terapéutico de las nanopartículas (NP) aplicada en el CT. Se realizó una búsqueda bibliográfica en PubMed, Embase, Web of Science, Elsevier y Scielo, seleccionando un total de 41 artículos conforme a los lineamientos de la escala para la evaluación de artículos de revisión narrativa (SANRA). Las palabras clave se definieron mediante el uso de la guía Medical Subject Heading (MeSH). Los resultados evidencian que las NP mejoran la biodisponibilidad de los fármacos, reducen efectos adversos y permiten una liberación controlada de agentes terapéuticos. Formulaciones como nanoemulsiones, liposomas, NP híbridas y fototérmicas demuestran un alto potencial en la focalización tumoral. En conjunto, las NP representan un enfoque prometedor y altamente específico para optimizar el tratamiento del CT y superar las limitaciones de las terapias tradicionales.
Descargas
Citas
Sahare P, Ruiz-Manriquez LM, Anguiano B, Banerjee A, Pathak S, Duttaroy AK, Bárce- nas GL y Sujay P. Recent advances in nano- medicine for the diagnosis and therapy of thyroid disorders. 3 Biotech. 2025;15(3):67. https://doi.org/10.1007/s13205-025- 04234-4
Salman AG, Mahdi IAJ, Mukhlef AK, Mo- hammad R, Zaghir MSH y Wadaa’a, N. Physiological aspects of thyroid disorders: Anatomy, hormones, diagnosis and ma- nagement. Current Clinical and Medical Education. 2024; 2(5), 1732. https://www. visionpublisher.info/index.php/ccme/arti- cle/view/68
Mestanza PMG, Salazar JLP, Jacome MJV, Tipán PAP, Granja EST. Trastornos tiroi- deos en el adulto, paciente pediátrico y embarazo. RECIAMUC. 2025;9(2):248-261. https://doi.org/10.26820/reciamuc/9.(2). abril.2025.248-261
Yang L, Wang X, Zhang S, Cao K, Yang J. Research progress on artificial intelligence technology-assisted diagnosis of thyroid diseases. Front Oncol. 2025; 15:1536039. https://doi.org/10.3389/fonc.2025.1536039
Boucai L, Zafereo M y Cabanillas ME. Thyroid cancer a review. Jama 2024; 331(5), 425-435. https://doi.org/10.1001/ jama.2023.26348
Caneo C, Aedo I, Riquelme MJ, Fardella C. Disfunción tiroidea y trastornos del ánimo: revisión del estado del arte. Rev Med Clin Las Condes. 2020;31(2):122-129. https:// doi.org/10.1016/j.rmclc.2020.01.003
Wan Y, Li G, Cui G, Duan S, Chang S. Repro- gramming of thyroid cancer metabolism: From mechanism to therapeutic strategy. Mol Cancer. 2025; 24(1):74. https://molecularcancer.biomedcentral.com/articles/10.1186/s12943-025-02263-4
Barahona JJ. Microcarcinoma papilar de ti- roides. Actas Méd (Ecuador). 2021;31(2):80-83. https://actasmedicas.ec/index.php/am/ article/view/47
Chen DW, Lang BHH, McLeod DSA, New- bold K, Haymart MR. Thyroid cancer. Lan- cet. 2023; 401(10387):153144. https://doi. org/10.1016/s0140-6736(23)00020-x
Li C, Zhang C, Ma C, Wang Y, Duan Q. Synchronous thyroid medullary cancer and thyroid hemiagenesis: A case report. Exp Ther Med. 2025; 29(4):77. https://doi. org/10.3892/etm.2025.12827
Zhiyue, Z., Huijing, HE, Guangliang, S. y Yansong, L. Research progress in epide- miology and risk factors of thyroid cancer. China Oncology. 2025; 35(1), 21-29. https:// www.china-oncology.com/EN/10.19401/j. cnki.10073639.2025.01.003
Lyu Z, Zhang Y, Sheng C, Huang Y, Zhang Q, & Chen K. Global burden of thyroid cancer in 2022: Incidence and mortality estimates from GLOBOCAN. Chinese Medical Jour- nal. 2024; 137(21), 2567-2576. https://doi.org/10.1097/cm9.0000000000003284
Sexton GP, Crotty TJ, Staunton SM, Healy ML, O’Neill JP, Timon C, et al. Thyroid cancer epidemiology in Ireland from 1994 to 2019 – rising diagnoses without mor- tality benefit. Surgeon. 2024. https://doi.org/10.1016/j.surge.2024.08.017
Sánchez-Sánchez JF, Lemus-Rodríguez Y, Ramírez-Aguilar R, Briseño-Hernández AA, Ramos-Barrales M. Metástasis orbitaria e intracraneal secundaria a carcinoma de tiroides. Cir Cir. 2021;89(91). https://doi.org/10.24875/ciru.20001274
Esquivel EP, Lorenzo JDJC, Valero CN, Val- dez JEF, Reyna GO. Impacto de la inciden- cia de cáncer en el Hospital General ISSSTE Toluca, periodo 2014-2018 y su tendencia al año 2040. Arch Investig Materno Infant. 2021;11(2):4755. https://www.medigraph- ic.com/pdfs/imi/imi-2020/imi202a.pdf
Ochoa JFV, Lescano HBS, Valla ERP, Álva- rez MDO, Benítez OIM. Cáncer de tiroides: perfil clínico-epidemiológico. J Am Health. 2023;6(1). https://jah-journal.com/index. php/jah/article/view/158
Wang J, Tan J, Wu B, Wu R, Han Y, Wang C, Gao Z, Jiang D. y Xia X. Customizing can- cer treatment at the nanoscale: a focus on anaplastic thyroid cancer therapy. J Nano- biotechnology. 2023;21(1):374. https://doi.org/10.1186/s12951-023-02094-9
Pakkianathan J, Chan S, Cruz J, Ewan K, Simental AA, Khan S. Targeting surface markers in anaplastic thyroid cancer: Fu- ture directions in ligand-bound therapy. J Endocr Soc. 2025;9(4): bvaf035. https://doi.org/10.1210/jendso/bvaf035
Wang L, Wu X, Wang X, Dong M, Zhang H & Zhao P. Targeting CHEK1: Ginseno- sides-Rh2 and Cu2O@ G-Rh2 nanopar- ticles in thyroid cancer. Cell Biology and Toxicology. 2025; 41(1), 1-28. https://doi.org/10.1007/s1056502409961-7
Wei W, Han L, Liu J, Shi L, Luo P. Treat- ment of thyroid cancer by zinc nanopar- ticles green-formulated by a medic- inal plant. Inorg Chem Commun. 2025;173(113805):113805. http://dx.doi.org/10.1016/j.inoche.2024.113805
Neri Álvarez ME. Tratamiento superficial con nanopartículas funcionalizadas para la conservación de mampostería ornamental de arcilla cocida. Monterrey: Universidad Autónoma de Nuevo León; 2021. http://eprints.uanl.mx/id/eprint/21604
Hassan, EA, Abdelnaser, A, Ibrahem, S, Yousef, E. H., Mosallam, AM, & Zayed, SE. 5H Pyrolo (3, 4-b) Pyrazin-5, 7-(6H)-di- one 6-(N-Chitosanimide nanoparticle) composite nano silver and encapsulation in -cyclodextrin: Synthesis, molecular docking, and biological evaluation for thy- roid cancer treatment. International Journal of Biological Macromolecules. 2025; 140859. https://doi.org/10.1016/j.ijbio- mac.2025.140859
Tawfik, NM, Teiama MS, Iskandar SS, Os- man A, & Hammad SF. A novel nanoemul- sion formula for an improved delivery of a Thalidomide analogue to triple-nega- tive breast cancer; synthesis, formulation, characterization and molecular studies. International Journal of Nanomedicine. 2023; 1219-1243. https://doi.org/10.2147/ ijn.s385166
Balamurugan K, Chintamani P. Lipid nanoparticulate drug delivery: an overview of the emerging trend. Pharma Innov J. 2018;7(7):779–789. https://www.thephar- majournal.com/archives/2018/vol7issue7/ PartM/7-6-166-872.pdf
Gulwani, D, Upadhyay, P, Goel, R, Saran- gthem, V y Singh, TD. Nanomedicine me- diated thyroid cancer diagnosis and treat- ment: an approach from generalized to personalized medicine. Discover Oncology. 2024; 15(1),789. https://doi.org/10.1007/ s12672-024-01677-8
González KN, Gema GV, Catari E, Sabino MA. Diseño y evaluación de partículas po- liméricas como vehículos para el encap- sulamiento y liberación de fármacos. Rev Iberoam Polímeros. 2024;25(4):147-183. https://dialnet.unirioja.es/servlet/articulo?- codigo=9882028
Tomar R, Das SS, Balaga VKR, Tambe S, Sahoo J y Rath SK. Therapeutic implica- tions of dietary polyphenols-loaded na- noemulsions in cancer therapy. ACS Appl Bio Mater. 2024;7(4):2036-53. https://doi.org/10.1021/acsabm.3c01205
Hu D, Ogawa K, Kajiyama M y Enomae T. Characterization of self-assembled silver nanoparticle ink based on nanoemulsion method. R Soc Open Sci. 2020;7(5):200296. https://doi.org/10.1098/rsos.200296
Fan Y, Xiong Y, Wang X, Chen J, Fang D, Huang J y Yuan G. Poly (lactic-co-glycolic acid)-encapsulated iodine-131 nanoparti- cles fabricated with rhTSH induce apoptosis and immobilization of thyroid cancer cells. Frontiers in Oncology. 2023; 13, 1030105. https://doi.org/10.3389/fonc.2023.1030105
Li Q, Zhang L, Lang J, Tan Z, Feng Q, Zhu F y Ge M. Lipid-Peptide-mRNA Nanoparticles Augment Radioiodine Uptake in Anaplastic Thyroid Cancer. Advanced Science. 2023; 10(3), 2204334. https://doi.org/10.1002/advs.202204334
Shah S, y Lucke-Wold B. Image-guided mesenchymal stem cell sodium iodide symporter (NIS) radionuclide therapy for glioblastoma. Cancers. 2024;16(16):2892. https://doi.org/10.3390/cancers16162892
Zhang X, Yan Z, Meng Z, Li N, Jia Q, Shen Y y Ji Y. Radionuclide 131I-labeled albu- min-indocyanine green nanoparticles for synergistic combined radio-photothermal therapy of anaplastic thyroid cancer. Fron- tiers in Oncology. 2022; 12, 889284. https:// doi.org/10.3389/fonc.2022.889284
Feyadh SM y Mohammed AH. Syntheses, characterization, and suppression effi- ciency of silver & silver iodide nanoparti- cle for proliferation, migration, and inva- sion in follicular thyroid carcinoma cells. Materials Research Express. 2022; 9(5),055402. https://iopscience.iop.org/arti- cle/10.1088/2053-1591/ac6d4b/meta
Seaberg J, Montazerian H, Hossen MN, Bhat- tacharya R, Khademhosseini A y Mukherjee
P. Hybrid nanosystems for biomedical appli- cations. ACS Nano. 2021;15(2):2099-2142.
https://doi.org/10.1021/acsnano.0c09382
Mehta S, Suresh A, Nayak Y, Narayan R y Na- yak UY. Hybrid nanostructures: Versatile sys- tems for biomedical applications. Coordina- tion Chemistry Reviews.2022;460, 214482. http://dx.doi.org/10.1016/j.ccr.2022.214482
Sun J, Li J, Li X, Yang L y Liu Y. Sequen- tially responsive size reduction and drug release of core-satellite nanoparticles to enhance tumor penetration and ef- fective tumor suppression. Chin Chem Lett. 2023;34(5):107891. http://www.ccs- publishing.org.cn/article/doi/10.1016/j. cclet.2022.107891
Yuan D, Lu Z, Xu X, & Liu W. RGD pep- tide-conjugated polydopamine nanoparti- cles loaded with doxorubicin for combined chemotherapy and photothermal therapy in thyroid cancer. Discover Oncology. 2024; 15(1), 794. https://doi.org/10.1007/s12672024-01682-x
Al-Janabi G, Hassan HN y Al-Fahham A. Biochemical changes in patients during hy- pothyroid phase after thyroidectomy. Jour- nal of medicine and life. 2022; 15(1), 104. https://doi.org/10.25122/jml-2021-0297
Bitgen N, Bayram F, Hamurcu Z, Baskol G, Ozturk F, Abdulrezzak U y Donmez-Al- tuntas H. The effects of iodine 131 treat- ment on chromosomal and oxidative DNA damage in papillary thyroid carcinoma. Mutation Research-Genetic Toxicology and Environmental Mutagenesis. 2024; 898, 503797. https://doi.org/10.1016/j.mr- gentox.2024.50379740. Shao C, Li Z, Zhang C, Zhang W, He R y Xu
J. Optical diagnostic imaging and thera- py for thyroid cancer. Mater Today Bio. 2022;17:100441. https://doi.org/10.1016/j. mtbio.2022.100441
Fröhlich E y Wahl R. Nanoparticles: Pro- mising Auxiliary Agents for Diagnosis and Therapy of Thyroid Cancers. Cancers. 2021;13(16):4063. https://doi.org/10.3390/ cancers13164063

Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2025 REMUS - Revista Estudiantil de Medicina de la Universidad de Sonora

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.