Artificial intelligence in medicine: current overview
DOI:
https://doi.org/10.59420/remus.10.2023.178Keywords:
Artificial intelligence, Diagnosis, Treatment, Medical fieldAbstract
Artificial intelligence (AI) has an enormous potential to modernize the practice and education of medicine. This technology, based on algorithms which enable machines to develop high complexity reasoning processes, nowadays has applications in healthcare that, although it’s still in early stages, shows great promise for optimizing the professional practice of medical sciences. This implies benefits on prevention methods and diagnosis, as well as in novel treatments and improved prognoses for patients. A bibliographic review was carried out with the objective of presenting the general picture of AI applications in medicine and its possible role in the future. We concluded that it’s very likely that these types of instruments will take part in the daily work of every healthcare worker and, therefore, it’s important to understand their limits and advantages, seeking to integrate these auxiliary tools in the medical field in the best possible way.
Downloads
References
Avila-Tomás JF, Mayer-Pujadas MA, Que-sada-Varela VJ. La Inteligencia artificial y sus aplicaciones en medicina I: Intro-ducción Antecedentes a la IA y robótica. Atención Primaria. 2020; 52(10):778–84. https://doi.org/10.1016/j.aprim.2020.04.013
Yu K-H, Beam AL, Kohane IS. Artificial Intelligence in Healthcare. Nature Bio-medical Engineering. 2018; 2(10):719–31. https://doi.org/10.1038/s41551-018-0305-z
Murphy, K. P. y Bach F. Machine Learning: A Probabilistic Perspective (MIT Press, Cam-bridge, 2012).
Haleem A, Javaid M, Khan IH. Current Status and Applications of Artificial Intelligence (AI) in Medical Field: An Overview. Current Medi-cine Research and Practice. 2019; 9(6):231–7. https://doi.org/10.1016/j.cmrp.2019.11.005
Haleem A, Vaishya R, Javaid M, Khan IH. Artificial Intelligence (AI) Applica-tions in Orthopedics: An Innovative Tech-nology to Embrace. Journal of Clini-cal Orthopaedics and Trauma. 2020; 11. https://doi.org/10.1016/j.jcot.2019.06.012
Lupton M. Some Ethical and Legal Con-sequences of the Application of Artifi-cial Intelligence in the Field of Medi-cine. Trends in Medicine. 2018; 18(4). http://dx.doi.org/10.15761/TiM.1000147
Lanzagorta-Ortega D, Carrillo-Pérez DL, Carrillo-Esper R. Inteligencia artifi-cial en medicina: Presente y Futuro. Gac-eta Médica de México. 2023; 158(91). https://doi.org/10.24875/gmm.m22000688
Howard J. Artificial Intelligence: Implications for the Future of Work. American Journal of Industrial Medicine. 2019; 62(11):917–26. https://doi.org/10.1002/ajim.23037
Topol EJ. High-Performance Medicine: The Convergence of Human and Artificial Intelli-gence. Nature Medicine. 2019; 25(1):44–56. https://doi.org/10.1038/s41591-018-0300-7
Basogai-Olabe X. Redes neuronales arti-ficiales y sus aplicaciones. Escuela Supe-rior de Ingeniería de Bilbao. Bilbao: Es-cuela Superior de Ingeniería de Bilbao. https://ocw.ehu.eus/file.php/102/redes_neuro/contenidos/pdf/libro-del-curso.pdf
Hamet P, Tremblay J. Artificial Intelligence in Medicine. Metabolism. 2017; 69: 36–40. https://doi.org/10.1016/j.metabol.2017.01.011
Busnatu Ștefan, Niculescu A-G, Bolocan A, Petrescu GE, Păduraru DN, Năstasă I et al. Clinical Applications of Artificial In-telligence—An Updated overview. Jour-nal of Clinical Medicine. 2022; 11(8):2265. https://doi.org/10.3390/jcm11082265
Yao L., Zhang H., Zhang M., Chen X., Zhang J., Huang J., Zhang L. Applica-tion of Artificial Intelligence in Renal Disease. Clin. Ehealth. 2021; 4:54–61. https://doi.org/10.1016/j.ceh.2021.11.003
Krittanawong C, Zhang H, Wang Z, Aydar M, Kitai T. Artificial Intelligence in Precision Cardiovascular Medicine. J Am Coll Cardiol. 2017; 69: 2657–2664. https://doi.org/10.1016/j.jacc.2017.03.571
Schwalbe N, Wahl B. Artificial Intelli-gence and the Future of Global Health. The Lancet. 2020; 395(10236):1579–86. https://doi.org/10.1016/s0140-6736(20)30226-9
Jha S, Topol EJ. Adapting to Artificial Intelli-gence: Radiologists and Pathologists as Infor-mation Specialists. JAMA 2016; 316: 2353–54. https://doi.org/10.1001/jama.2016.17438
Ávila-Tomás JF, Mayer-Pujadas MA, Que-sada-Varela VJ. La Inteligencia artificial y sus aplicaciones en medicina II: Im-portancia actual Y Aplicaciones Prácti-cas. Atención Primaria. 2021; 53(1):81–8. https://doi.org/10.1016/j.aprim.2020.04.014
Mintz Y, Brodie R. Introduction to Artificial Intelligence in Medi-cine. Minimally Invasive Therapy Al-lied Technologies. 2019; 28(2):73–81. https://doi.org/10.1080/13645706.2019.1575882
Jungwirth D, Haluza D. Artificial Intelligence and Public Health: An Exploratory Study. International Journal of Environmental Re-search and Public Health. 2023; 20(5):4541. https://doi.org/10.3390/ijerph20054541
Giansanti D. Artificial Intelligence in Public Health: Current Trends and Future Possibilities. International Journal of Environmental Re-search and Public Health. 2022; 19(19):11907. https://doi.org/10.3390/ijerph191911907
Patel V., Shah M. A Comprehensive Study on Artificial Intelligence and Ma-chine Learning in Drug Discovery and Drug Development. Intell. Med. 2021. https://doi.org/10.1016/j.imed.2021.10.001
Nakamura T., Sasano T. Artificial Intelli-gence and Cardiology: Current Status and Perspective. J. Cardiol. 2022; 79:326–333. https://doi.org/10.1016/j.jjcc.2021.11.017
Bernstam EV, Shireman PK, Meric‐Ber-nstam F, N. Zozus M, Jiang X, Brimhall BB et al. Artificial Intelligence in Clini-cal and Translational Science: Successes, Challenges and Opportunities. Clinical and Translational Science. 2021; 15(2):309–21. https://doi.org/10.1111/cts.13175
Colbert JA, Chokshi DA. Technology in Medical Education—Osler Meets Watson. J Gen Intern Med. 2014 Dec; 29(12):1584-5. https://doi.org/10.1007/s11606-014-2975-x
Valdez-García J, López Cabrera M, Jiménez Martínez M, Díaz Elizondo J, Dávila Ri-vas J, Olivares Olivares S. Me prepa-ro para ayudar: respuesta de escuelas de medicina y ciencias de la salud ante COVID-19. Inv Ed Med. 2020; (35):85-95. https://www.medigraphic.com/cgi-bin/new/resumen.cgi?IDARTICULO=95038
Newman NA, Lattouf OM. Coalition for Medical Education-A Call to Action: A Prop-osition To Adapt Clinical Medical Education to Meet the Needs Of Students And Oth-er Healthcare Learners During COVID-19. J Card Surg. 2020 Jun; 35(6):1174-5. https://doi.org/10.1111/jocs.14590
Abd-Alrazaq A, AlSaad R, Alhuwail D, Ahmed A, Healy PM, Latifi S, Aziz S, Dam-seh R, Alabed Alrazak S, Sheikh J. Large Language Models in Medical Education: Opportunities, Challenges, and Future Direc-tions. JMIR Med Educ. 2023 Jun 1; 9:e48291. https://doi.org/10.2196/48291
Martínez-Ezquerro JD. Authors in the age of language-generation AI: To Be or not to Be, Is That Really the Ques-tion? Arch Med Res 2023; 54:163–167. https://doi.org/10.1016/j.arcmed.2023.03.002
Calleja-López JRT, Rivera-Rosas CN, Ruibal-Tavares E. Impact of ChatGPT and Artificial Intelligence in the Con-temporary Medical Landscape. Arch Med Res. 2023 Jul;54(5):102835. https://doi.org/10.1016/j.arcmed.2023.05.003
Eysenbach G. The Role of ChatGPT, Gen-erative Language Models, and Artificial In-telligence in Medical Education: A Conver-sation with ChatGPT and a Call for Papers. JMIR Med Educ. 2023 Mar 6; 9:e46885. https://doi.org/10.2196/46885
Ward TM, Mascagni P, Madani A, Padoy N, Perretta S, Hashimoto DA. Surgical Data Sci-ence and Artificial Intelligence for Surgical Education. J Surg Oncol. 2021; 124:221-30. https://doi.org/10.1002/jso.26496
He J, Baxter SL, Xu J, Xu J, Zhou X, Zhang K. The Practical Implementation of Arti-ficial Intelligence Technologies in Medi-cine. Nature Medicine. 2019;25(1):30–6. https://doi.org/10.1038/s41591-018-0307-0
Scafa Udriște A., Niculescu A.-G., Grumez-escu A.M., Bădilă E. Cardiovascular Stents: A Review of Past, Current, and Emerg-ing Devices. Materials. 2021; 14:2498. https://doi.org/10.3390/ma14102498
Redaelli A., Votta E. Cardiovascular pa-tient-specific modeling: Where Are We Now and What Does the Future Look like? APL Bioeng. 2020; 4:040401. https://doi.org/10.1063/5.0031452
Balu A., Nallagonda S., Xu F., Krish-namurthy A., Hsu M.-C., Sarkar S. A Deep Learning Framework for Design and Analysis of Surgical Bioprosthet-ic Heart Valves. Sci. Rep. 2019; 9:18560. https://doi.org/10.1038/s41598-019-54707-9
Lee Y., Veerubhotla K., Jeong M.H., Lee C.H. Deep Learning in Personaliza-tion of Cardiovascular Stents. J. Cardio-vasc. Pharmacol. Ther. 2019; 25:110–120. https://doi.org/10.1177/1074248419878405
Liu X., Aslan S., Hess R., Mass P., Olivieri L., Loke Y.H., Hibino N., Fuge M., Krieger A. Au-tomatic Shape Optimization of Patient-Specif-ic Tissue Engineered Vascular Grafts for Aor-tic Coarctation; Proceedings of the 2020 42nd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC); Montreal, QC, Canada. 20–24 July 2020; pp. 2319–2323.
Tilton M., Lewis G.S., Hast M.W., Fox E., Manogharan G. Additively Manufactured Patient-Specific Prosthesis for Tumor Re-construction: Design, Process, and Prop-erties. PLoS ONE. 2021; 16:e0253786. https://doi.org/10.1371/journal.pone.0253786
Li J., Gsaxner C., Pepe A., Morais A., Alves V., von Campe G., Wallner J., Egger J. Synthetic Skull Bone Defects for Au-tomatic Patient-Specific Craniofacial Im-plant Design. Sci. Data. 2021; 8:36. https://doi.org/10.1038/s41597-021-00806-0
Roy S., Dey S., Khutia N., Roy Chowd-hury A., Datta S. Design of Patient Specif-ic Dental Implant Using FE Analysis and Computational Intelligence Techniques. Appl. Soft Comput. 2018; 65:272–279. https://doi.org/10.1016/j.asoc.2018.01.025
Tang A, Tam R, Cadrin-Chênevert A, Guest W, Chong J, Barfett J, et al. Canadian Association of Radiologists White Paper on Artificial In-telligence in Radiology. Canadian Association of Radiologists Journal. 2018; 69(2):120–135. https://doi.org/10.1016/j.carj.2018.02.002
De Fauw J, Ledsam JR, Romera-Paredes B, Nikolov S, Tomasev N, Blackwell S, et al. Clinically Applicable Deep Learning for Diagnosis and Referral in Retinal Dis-ease. Nature Medicine. 2018;24(9):1342–50. https://doi.org/10.1038/s41591-018-0107-6
Slomka PJ, Dey D, Sitek A, Motwani M, Ber-man DS, Germano G. Cardiac Imaging: Work-ing Towards Fully-Automated Machine Anal-ysis & Amp; Interpretation. Expert Review of Medical Devices. 2017; 14(3):197–212. https://doi.org/10.1080/17434440.2017.1300057

Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 REMUS - Revista Estudiantil de Medicina de la Universidad de Sonora (Journal of Medical Students' of the University of Sonora)

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.